Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone.
نویسندگان
چکیده
Cell adhesion molecules have been implicated in the selective colonization of cancer in distant organs. Breast cancer has a strong predilection for spreading to bone. Cadherin-11, which is one of the classical type-2 cadherin family members and mediates homophilic cell-cell adhesion, is constitutively expressed in stromal and osteoblastic cells in bone marrow. Elevated cadherin-11 expression is also found in aggressive human breast cancers. Here, we investigated the role of the interactions between breast cancer cells and bone marrow stromal/osteoblastic cells via cadherin-11 in the selective spread to bone. The bone-seeking clone of the MDA-MB-231 human breast cancer cells showed greater cadherin-11 expression than the parental and the brain-seeking clone. Cadherin-11 overexpression in MDA-MB-231 cells increased bone metastases with promoted bone resorption, while the natural variant form of cadherin-11 that is unable to establish cell-cell adhesion did not. Of note, introduction of cadherin-11 showed no effects on lung metastases. Fluorescence-activated cell sorter analysis using the fluorescent dye-labeled cancer cells showed that early colonization in bone marrow was increased by cadherin-11. Co-cultures with the MC3T3-E1 osteoblastic cells that constitutively expressed cadherin-11 caused an up-regulation of parathyroid hormone-related protein (PTH-rP) production in MDA-MB-231 cells overexpressing cadherin-11. The conditioned medium of the co-cultures increased osteoclastogenesis, which was blocked by a neutralizing antibody to PTH-rP. In conclusion, our results suggest that cadherin-11 promotes homing and migration to bone and osteoclastogenesis through mediating the homophilic interactions of breast cancer cells with marrow stromal/osteoblastic cells, thereby enhancing bone metastases.
منابع مشابه
Bone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملMolecular pathways: VCAM-1 as a potential therapeutic target in metastasis.
Interactions between disseminated tumor cells (DTC) and stromal cells in the microenvironment are critical for tumor colonization of distal organs. Recent studies have shown that vascular cell adhesion molecule-1 (VCAM-1) is aberrantly expressed in breast cancer cells and mediates prometastatic tumor-stromal interactions. Moreover, the usefulness of VCAM-1 to DTCs in 2 different organs--lung an...
متن کاملCadherin-6 Mediates the Heterotypic Interactions between the Hemopoietic Osteoclast Cell Lineage and Stromal Cells in a Murine Model of Osteoclast Differentiation
Osteoclasts are multinucleated cells of hemopoietic origin that are responsible for bone resorption during physiological bone remodeling and in a variety of bone diseases. Osteoclast development requires direct heterotypic cell-cell interactions of the hemopoietic osteoclast precursors with the neighboring osteoblast/stromal cells. However, the molecular mechanisms underlying these heterotypic ...
متن کاملLow-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 33 1 شماره
صفحات -
تاریخ انتشار 2008